| 引用本文: | 廖 勇,孙 章,吴 帆,等.基于矢量误差建模的Vienna整流器自适应过零畸变抑制策略[J].电力系统保护与控制,2026,54(02):103-115.[点击复制] |
| LIAO Yong,SUN Zhang,WU Fan,et al.Adaptive zero-crossing distortion suppression strategy for Vienna rectifiers based on vector error modeling[J].Power System Protection and Control,2026,54(02):103-115[点击复制] |
|
| 摘要: |
| 针对Vienna整流器输入电流过零畸变问题,提出了一种基于矢量误差建模的Vienna整流器自适应过零畸变抑制策略。首先,分析了Vienna整流器输入电流过零畸变现象,发现电流过零附近由纹波和采样误差导致的扇区误判及扇区误判时共享开关状态被使用产生的矢量误差是导致输入电流过零畸变的本质原因。根据分析结果,定量地构建了扇区误判发生条件和矢量误差的数学模型。在此基础上,设计了一种自适应过零畸变抑制策略。通过建立包含矢量误差的多目标模型预测误差函数,优化共享开关状态的使用,动态补偿矢量误差,从而抑制输入电流过零畸变。最后,通过搭建仿真模型和实物平台进行验证。实验结果表明,所提方法能够有效抑制输入电流过零畸变,显著提升了输入电流质量,为Vienna整流器过零畸变抑制提供了一种新的途径。 |
| 关键词: Vienna整流器 扇区误判 电流过零畸变 模型预测控制 共享开关状态 矢量误差 |
| DOI:10.19783/j.cnki.pspc.250283 |
| 投稿时间:2025-03-19修订日期:2025-08-28 |
| 基金项目:四川省自然科学基金项目资助(2022NSFSC0025) |
|
| Adaptive zero-crossing distortion suppression strategy for Vienna rectifiers based on vector error modeling |
| LIAO Yong1,SUN Zhang1,WU Fan2,WU Yunpu1,LE Shuyu1,ZHENG Maosheng1 |
| (1. School of Electrical and Electronic Information, Xihua University, Chengdu 610039, China; 2. School of Automation
Engineering, University of Electronic Science and Technology, Chengdu 611731, China) |
| Abstract: |
| To address the issue of input current zero-crossing distortion in Vienna rectifiers, this paper proposes an adaptive zero-crossing distortion suppression strategy based on vector error modeling. First, the phenomenon of input current zero-crossing distortion in Vienna rectifiers is analyzed. It is revealed that sector misjudgment caused by ripple and sampling errors near the current zero-crossing, together with vector errors generated by the use of shared switching states under sector misjudgment, are the fundamental causes of the distortion. Based on this analysis, a quantitative mathematical model of the sector misjudgment conditions and vector errors is developed. On this basis, an adaptive zero-crossing distortion suppression strategy is designed. By constructing a multi-objective model predictive error function incorporating vector errors, the use of shared switching states is optimized, and vector errors are dynamically compensated, thereby suppressing input current zero-crossing distortion. Finally, the proposed method is validated through simulations and physical platform experiments. Experimental results demonstrate that the proposed method can effectively suppress input current zero-crossing distortion and significantly improve input current quality, providing a new approach for zero-crossing distortion suppression in Vienna rectifiers. |
| Key words: Vienna rectifier sector misjudgment current zero-crossing distortion model predictive control shared switching state vector error |