引用本文: | 王 猛,王 琦,李增辉,等.基于分层架构的退役电池可重构均衡控制研究[J].电力系统保护与控制,2024,52(17):94-104.[点击复制] |
WANG Meng,WANG Qi,LI Zenghui,et al.Reconfigurable balanced control of retired batteries based on hierarchical architecture[J].Power System Protection and Control,2024,52(17):94-104[点击复制] |
|
本文已被:浏览 3168次 下载 209次 |
码上扫一扫! |
基于分层架构的退役电池可重构均衡控制研究 |
王猛1,2,王琦1,2,李增辉1,2,王庭华3,姚璐勤1,2,孙金磊4 |
|
(1.南京师范大学电气与自动化工程学院,江苏 南京 210046;2.江苏省综合能源设备及集成国际联合实验室,
江苏 南京 210046;3.国网江苏省电力有限公司经济技术研究院,江苏 南京 210009;
4.南京理工大学自动化学院,江苏 南京 210018) |
|
摘要: |
利用退役电池构建储能系统,充分利用其剩余价值,是解决大量退役电池再利用的重要途径。然而,经过多次充放电影响,退役电池不一致性问题较新电池更为突出。在此背景下,首先,针对退役电池储能系统提出了分层式可重构均衡拓扑。其次,基于该拓扑提出了分层式均衡控制策略。考虑组内部和组间两个层次的均衡控制,组内以SOC和端电压为均衡变量,通过重构实现电池单体状态均衡,组间以SOC为均衡变量,通过重构保证全电池簇均衡。同时考虑多种运行工况:静置过程中通过自均衡提高电池组的均衡效率和可用容量,放电过程中通过拓扑结构变换维持输出电压稳定,充电过程中考虑能量损耗和充电速度合理优化充电电流,缩短充电时间,减少温升,延长电池使用寿命。最后,在Matlab中验证了所提拓扑与均衡策略在不同工况下的有效性。 |
关键词: 可重构均衡 分层式拓扑 多工况 均衡控制策略 电压稳定 多级恒流充电 |
DOI:10.19783/j.cnki.pspc.231544 |
投稿时间:2023-12-06修订日期:2024-05-08 |
基金项目:国家自然科学基金项目资助(52007085);国网江苏省科技项目资助(SGJSJY00SJJS2260013) |
|
Reconfigurable balanced control of retired batteries based on hierarchical architecture |
WANG Meng1,2,WANG Qi1,2,LI Zenghui1,2,WANG Tinghua3,YAO Luqin1,2,SUN Jinlei4 |
(1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China; 2. Jiangsu
International Joint Laboratory for Comprehensive Energy Equipment and Integration, Nanjing 210046, China;
3. Economic and Technical Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210009, China;
4. School of Automation, Nanjing University of Science and Technology, Nanjing 210018, China) |
Abstract: |
Using retired batteries to construct a grid energy storage system can make full use of their residual value. This is an important way to solve the problem of reusing a large number of retired batteries. However, because they have been charged and discharged many time, there is an inconsistency problem that is more prominent than that with new batteries. First, a reconfigurable hierarchical balancing topology for retired batteries is proposed. Secondly, a hierarchical balanced control strategy is proposed based on this topology. Two levels of equalization control, i.e. intra- and inter-group are considered. SOC and terminal voltage are used as balancing variables within the group to achieve single cell state equalization through reconfiguration. SOC is used as a balancing variable between groups to ensure whole cell cluster equalization through reconfiguration. It simultaneously considers different operating conditions: balancing efficiency and usable capacity of battery packs is increased by self-equalization in static balancing. The output voltage stability is maintained by topology transformation in the discharging process. Charging current is reasonably optimized considering energy loss and charging speed in the charging process to shorten the charging time, reduce the temperature rise and improve service life. Finally, the effectiveness of the proposed topology and strategy in different operating conditions is verified in Matlab. |
Key words: reconfigurable equilibrium hierarchical topology variable operating conditions balancing control strategy voltage stability multi-stage constant current charging |